
DYNAMIC PROGRAMMING
DYNAMIC PROGRAMMING(动态规划)是一种用于解决最优决策问题的数学优化方法,广泛应用于计算机科学、经济学等领域。该术语通常作为名词使用,指代这一特定的算法设计技术。
词语辨析
在计算机科学中,"dynamic programming"主要指代一种方法或技术,不同于一般的编程或算法。这种方法强调将复杂问题分解为较小的简单子问题并利用已经解决的子问题的结果来求解更大的问题。
词汇扩充
- Optimal Substructure(最优子结构): 指问题的最优解由其子问题的最优解组成。
- Overlapping Subproblems(重叠子问题): 指在求解过程中会多次解决相同的子问题。
- Memoization(备忘录法): 一种存储已解决子问题解法的技术。
近义词
- Algorithmic Optimization(算法优化)
- Recursive Optimization(递归优化)
反义词
- Greedy Algorithm(贪心算法)
柯林斯词典与牛津词典
According to the Collins Dictionary, dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems.
The Oxford Dictionary defines dynamic programming as a programming method used for solving problems by recursively breaking them down into more manageable subproblems.
用法
在编程和算法研究中,DYNAMIC PROGRAMMING通常用于描述特定的技术或策略,尤其是在优化和决策制定时。
例句
Dynamic programming is a powerful technique for solving optimization problems.
动态规划是一种解决优化问题的强大技术。
By using dynamic programming, we can significantly reduce the computation time for certain problems.
通过使用动态规划,我们可以显著减少某些问题的计算时间。
Many algorithms, such as the Fibonacci sequence, can be optimized using dynamic programming.
许多算法,如斐波那契数列,可以通过动态规划进行优化。
The key to dynamic programming is to identify the optimal substructure.
动态规划的关键是识别最优子结构。
Dynamic programming is often used in machine learning for solving complex tasks.
动态规划常用于机器学习中解决复杂任务。
In dynamic programming, we store results of subproblems to avoid redundant calculations.
在动态规划中,我们存储子问题的结果以避免冗余计算。
Dynamic programming can be applied to problems such as the knapsack problem.
动态规划可以应用于背包问题等问题。
Understanding the principles of dynamic programming can help you tackle difficult problems more efficiently.
理解动态规划的原则可以帮助你更有效地解决困难问题。
Dynamic programming is often contrasted with other approaches like greedy algorithms.
动态规划通常与贪心算法等其他方法形成对比。
To master dynamic programming, practice solving classic problems like the longest common subsequence.
要掌握动态规划,练习解决经典问题如最长公共子序列。
Dynamic programming requires a clear understanding of recursive relationships.
动态规划需要清晰理解递归关系。
Many software engineers use dynamic programming to enhance algorithm efficiency.
许多软件工程师使用动态规划来提高算法效率。
The complexity of dynamic programming solutions is often polynomial compared to exponential methods.
动态规划解决方案的复杂性通常比指数方法要多项式。
Dynamic programming is essential for developing efficient AI algorithms.
动态规划对于开发高效的人工智能算法至关重要。
One of the main challenges in dynamic programming is avoiding overlapping subproblems.
动态规划中的主要挑战之一是避免重叠子问题。
Dynamic programming can greatly improve the performance of data processing tasks.
动态规划可以大大提高数据处理任务的性能。
Using dynamic programming can lead to more manageable code and clearer logic.
使用动态规划可以导致更易管理的代码和更清晰的逻辑。
When faced with a complex problem, consider whether dynamic programming can provide a solution.
面对复杂问题时,考虑动态规划是否能提供解决方案。
Dynamic programming techniques are often used in real-world applications such as finance.
动态规划技术常用于现实应用如金融。