
词汇分析:homeomorphic
“homeomorphic”是一个形容词,源自于数学中的拓扑学,用于描述两个拓扑空间之间的一种关系。它表示这两个空间在某种意义上是“相同的”,即可以通过连续变换相互映射。
词语辨析
“homeomorphic”主要用作形容词,描述拓扑空间的特性。它没有名词形式,但可以与其他名词结合形成相关术语,如“homeomorphism”(同胚映射)。
词汇扩充
homeomorphism - 同胚映射,指两个拓扑空间之间的双射映射,具有连续性及其反函数的连续性。
topology - 拓扑学,研究空间的性质及其变换的数学分支。
近义词
homeomorphic可以视为与continuous(连续的)相关,虽然其具体含义有所不同。
反义词
non-homeomorphic - 非同胚的,描述两个空间之间没有同胚映射的关系。
词典参考
柯林斯词典和牛津词典均将“homeomorphic”定义为在拓扑学中使用的形容词,表示两个空间在拓扑结构上相似。
用法示例
The two shapes are homeomorphic to each other, meaning they can be transformed into one another without cutting.
这两个形状是同胚的,意味着它们可以在不切割的情况下相互转换。
In topology, a homeomorphic relationship implies a deep similarity between spaces.
在拓扑学中,同胚的关系意味着空间之间的深层相似性。
Two objects are homeomorphic if there is a continuous function between them that has a continuous inverse.
如果两个对象之间存在一个连续函数且其反函数也是连续的,则它们是同胚的。
A circle and an ellipse are homeomorphic because they can be deformed into one another.
一个圆和一个椭圆是同胚的,因为它们可以变形为彼此。
The concept of homeomorphic spaces is fundamental in the study of topology.
同胚空间的概念在拓扑学研究中是基础。
Two surfaces are homeomorphic if you can stretch one into the shape of the other.
如果你能把一个表面拉伸成另一个的形状,那么这两个表面是同胚的。
Understanding homeomorphic mappings helps mathematicians classify different topological spaces.
理解同胚映射有助于数学家对不同的拓扑空间进行分类。
The study of homeomorphic transformations is essential in advanced geometry.
对同胚变换的研究在高级几何学中是至关重要的。
In general, homeomorphic objects have the same topological properties.
一般而言,同胚的对象具有相同的拓扑性质。
Two graphs may be homeomorphic even if they look different at first glance.
即使两个图在初看时看起来不同,它们也可能是同胚的。
The relationship between homeomorphic spaces is a key topic in modern mathematics.
同胚空间之间的关系是现代数学的一个关键主题。
Researchers often explore homeomorphic properties to understand complex shapes.
研究人员经常探讨同胚的属性以理解复杂形状。
If two objects are homeomorphic, they share the same number of holes.
如果两个对象是同胚的,它们共享相同数量的孔。
The homeomorphic nature of these surfaces allows for easy manipulation in computer graphics.
这些表面的同胚特性允许在计算机图形中进行简单的操作。
Homeomorphic transformations are widely used in topological data analysis.
同胚变换在拓扑数据分析中被广泛使用。
Identifying homeomorphic relationships can simplify complex problems in mathematics.
识别同胚关系可以简化数学中的复杂问题。
Mathematicians utilize homeomorphic concepts to better understand spatial relationships.
数学家利用同胚概念来更好地理解空间关系。
In computer science, homeomorphic representations can enhance data visualization.
在计算机科学中,同胚表示可以增强数据可视化。